Experiment Name: Determining Alkalinity in Wastewater

Objective

To determine the alkalinity of wastewater samples by titration, in accordance with Indian Standard IS 3025 (Part 23): 1986, reaffirmed in 2003.

Scope

This method is applicable to all types of wastewater to determine alkalinity, which reflects the presence of hydroxides, carbonates, and bicarbonates.

Principle

The alkalinity of wastewater is measured by titration with standard acid using indicators such as phenolphthalein and methyl orange to determine various forms of alkalinity.

Apparatus

- 1. Conical flask (250 mL)
- 2. **Burette** (50 mL capacity)
- 3. **Pipette** (10 or 20 mL)
- 4. **Measuring cylinder** (100 mL)
- 5. **Beaker** (100 mL)
- 6. Glass rod
- 7. Wash bottle

Reagents

- 1. Standard Sulphuric Acid (H₂SO₄), 0.02 N
 - o Standardize the acid solution using sodium carbonate.
- 2. Phenolphthalein Indicator
 - o Dissolve 0.5 g of phenolphthalein in 50 mL of ethyl alcohol and dilute to 100 mL with distilled water.
- 3. Methyl Orange Indicator
 - o Dissolve 0.5 g of methyl orange in 100 mL distilled water.
- 4. **Distilled Water** (free from carbon dioxide)

Procedure

Preparation of the Sample

• Collect a representative wastewater sample in a clean bottle.

• Filter the sample (if turbid) to remove suspended solids.

Titration Process

- 1. Take the sample: Pipette 25 mL of wastewater into a conical flask.
- 2. Phenolphthalein Alkalinity (P):
 - o Add 2-3 drops of phenolphthalein indicator.
 - o If the solution turns **pink**, titrate with **0.02** N H₂SO₄ until the pink color just disappears. Record the burette reading as V1.
 - o If no pink color develops, phenolphthalein alkalinity is zero.
- 3. Total Alkalinity (T):
 - Add **2-3 drops** of methyl orange indicator to the same sample (after phenolphthalein titration).
 - o Titrate with 0.02 N H₂SO₄ until the color changes from yellow to orange (or light pink). Record the burette reading as V2.
- 4. Final Observations:
 - o Phenolphthalein alkalinity (P) = V1 mL
 - o Total alkalinity (T) = V2 mL

Observation Table

S.No.	Vol. of Sample	Burette Reading		Vol. of H2SO4 used (V)
		initial	final	

Calculations

The alkalinity is expressed as mg/L of CaCO₃ using the following formulae:

1. Phenolphthalein Alkalinity (as CaCO₃):

 $P=V1\times N\times 50,000/Vs$

2. Total Alkalinity (as CaCO₃):

 $T=V2\times N\times 50,000/Vs$

Where:

- V1 = Volume of H₂SO₄ used for phenolphthalein alkalinity (mL)
- V2 = Volume of H₂SO₄ used for total alkalinity (mL)
- N = Normality of H₂SO₄ (0.02 N)
- V_s = Volume of sample taken (mL, typically 25 mL)

Reporting Alkalinity:

- Report the results as **Phenolphthalein Alkalinity** and **Total Alkalinity** in mg/L as CaCO₃.
- If P = 0, only total alkalinity is reported.

Results

Record the following:

Sample ID	Phenolphthalein Alkalinity (mg/L)	Total Alkalinity (mg/L)	

Conclusion

This procedure allows for the accurate determination of alkalinity in wastewater samples, which is crucial for assessing water quality and treatment processes.

Precautions

- 1. Use freshly prepared indicators and standardized H₂SO₄.
- 2. Ensure the glassware is clean and rinsed with distilled water.
- 3. Avoid contamination of the sample during collection and testing.
- 4. Perform titration slowly near the endpoints for accuracy.
- 5. Use distilled water free from CO₂.

References

- 1. **IS 3025 (Part 23): 1986** Methods of Sampling and Test (Physical and Chemical) for Water and Wastewater.
- 2. Standard Methods for the Examination of Water and Wastewater, APHA.